6 research outputs found

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Bound and scattering states of extended Calogero model with an additional PT invariant interaction

    Full text link
    Here we discuss two many-particle quantum systems, which are obtained by adding some nonhermitian but PT (i.e. combined parity and time reversal) invariant interaction to the Calogero model with and without confining potential. It is shown that the energy eigenvalues are real for both of these quantum systems. For the case of extended Calogero model with confining potential, we obtain discrete bound states satisfying generalised exclusion statistics. On the other hand, the extended Calogero model without confining term gives rise to scattering states with continuous spectrum. The scattering phase shift for this case is determined through the exchange statistics parameter. We find that, unlike the case of usual Calogero model, the exclusion and exchange statistics parameter differ from each other in the presence of PT invariant interaction.Comment: 7 pages, latex, uses czjphys.cls, contributed to the `1st International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics', Prague, June 16-17, 200

    Heat-Shielding Nanobrick Wall for Carbon Fiber-Reinforced Polymer Composites

    No full text
    Owing to their excellent mechanical properties, carbon fiber-reinforced polymer (CFRP) composites have a broad spectrum of applications in aerospace, civil engineering, automotive, and numerous industrial fields. Despite their many advantages, the inherent lack of thermal stability of the polymer matrix results in the loss of the composite’s mechanical properties when exposed to elevated temperatures. In an effort to provide thermal protection, a multilayer film composed of tris(hydroxymethyl)-aminomethane (THAM)-buffered polyethylenimine (PEI) and vermiculite (VMT) clay was deposited on CFRP composites via layer-by-layer assembly. When subjected to the flame from a butane torch and mechanical loading, the polymer–clay nanobrick wall provides substantial thermal insulation, decreasing the temperature on the backside of the CFRP composites by as much as 100 °C. The PEI-THAM/VMT coating also helps to maintain the storage modulus of the composite and offers significant protection from oxidative degradation, as confirmed by dynamic mechanical analysis and X-ray photoelectron spectroscopy. The performance of this polymer–clay multilayer film provides excellent thermal barrier that can be used to protect advanced composite materials from extreme heat
    corecore